X-Ray Spectral Determination of the Effective Charges on Phosphorus, Sulfur, and Chlorine Atoms in Chemical Compounds with a Nonempirical Charge Scale

G. N. Dolenko*

Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, 664033 Irkutsk, Russia

Z. Latajka and H. Ratajczak

Institute of Chemistry, University of Wroclaw, 14 Joliot-Curie St., 50-383 Wroclaw, Poland

Received 1995

ABSTRACT

Linear dependence between the experimental K_a line shifts and Mulliken atomic charges obtained by SCF ab initio calculations with 4-31G, 4-31G^{*}, and 4-31G^{**} basis sets for the P, S, and Cl atoms have been found. The electron density redistribution of PCl₃ and SPCl₃ free ligands on their complexation with AlBr₃ has been investigated. It has been shown that a significant transfer of the total ligand electron density to the acceptor is absent, but there is an essential growth of the ionicity of all bonds on complexation. The P=S and P-S bond ionicities are found to increase linearly with the growth of the positive charge on the central phosphorus atom. © 1996 John Wiley & Sons, Inc.

INTRODUCTION

One of the most suitable methods for studying the effective atomic charge on the second row elements (A) is the measurement of AK_a line shifts (ΔAK_a) [1–5]. In our prior studies [3–5], we have reported the

Dedicated to the great chemist Professor Shigeru Oae on the occasion of his 75th birthday.

*To whom correspondence should be addressed.

relationship between the experimental AK_a shifts (A = P, S, Cl) and the effective A atom charges. The calculations of atomic charges were performed by the electronegativity equalization procedure [3,6] and by semiempirical quantum-chemical CNDO/S, CNDO/2, INDO, MINDO/3, and MNDO methods in the large series of model compounds [4,5]. By using all the previously mentioned semiempirical methods in the minimal basis set and CNDO/S in the extended basis set, we have found that the dependence was split into two linear relationships for the S and P atoms. One held true for the compounds in which the heteroatom considered had the minimal coordination number (1 for S and 3 for P) and the other for all of the remaining compounds.

It is very likely that the splitting of the dependence may be explained by a shortcoming of the parametrization of the above-mentioned semiempirical methods. In the present work, we have carried out SCF ab initio calculations on a large series of model compounds in order to examine this suggestion and to achieve the possibility of obtaining effective A atoms charges (q_A) in a stricter charge scale.

METHODS

All quantum-chemical calculations were carried out using the Gaussian 92 package of programs [7] at the HF level with $4-31G^+$, $4-31G^*$ and $4-31G^{**}$ basis sets. In the basis set denoted as $4-31G^+$, the *d* polarization

functions were placed only on the second row central atoms. The exponents of polarization functions were adopted from the $6-31G^{**}$ basis set [8–10]. The experimental molecular structure for the gas phase had been used previously for all molecules taken into consideration [11–13]. The values of structure parameters not defined experimentally were obtained by MNDO optimization.

The experimental values of AK_a shifts (A = P, S, Cl) were taken from Ref. [14].

RESULTS AND DISCUSSION

The results of SCF ab initio calculations in the large series of model compounds are gathered in Figures 1–3 where in the calculated Mulliken *A* atom charges are connected with the experimental AK_a shifts. The results of this connection are presented in Table 1.

From the analysis of data gathered in Table 1 and Figures 1–3, one can see that the q_A vs. ΔAK_a dependence is close to linearity in all cases and does not split. For the S atom, a good linear relationship is observed for any basis set used and for all series of compounds considered. The attempted correlations of q_P vs. ΔPK_a are somewhat worse. This may be explained by the anomanously high acceptor effect of the Me group bonded to the P atom that occurred by consideration of calculation data. Nevertheless, these dependence obtained with 4-31G* and 4-31G** basis sets become satisfactory after removal of Me₃P and OPMe₃ molecules from consideration.

Essentially poorer dependences are seen for the Cl atom. We think that this may be explained by the fact that the ratio between the ΔAK_a value changing region and the experimental errors of AK_a definition is one order of magnitude smaller for A = Cl than

for A = S, P. Taking into consideration the errors of the ClK_a shift measurement, one can draw a conclusion that the q_{Cl} vs. Δ ClK_a dependences presented in Figures 2 and 3 are also satisfactory. Hence, the possibility of determining the effective charges on the different A atoms in single charge scales according to SCF ab initio calculations with three basis sets by using the experimental AK_a shifts only has been achieved. The best results are obtained at the 4-31G** level of theory.* From Table 1, it follows that the basis set expansion leads to the improvement of agreement between the experimental AK_a shifts and q_A values.**

It was of interest to utilize the data obtained for the investigation of the electron density redistribution on complexation between a donor molecule PCl₃ or SPCl₃ (where one can define the effective charges on all atoms by their K_a shifts) and an acceptor molecule AlBr₃ containing no interfered atoms. The data presented in Table 2 show that, in spite of positive q_p growth on complexation the total ligand electron density does not decrease (in the range of accuracy achieved) due to a strong dampening effect of the Cl atoms. This leads to a sufficient growth of the ionicity*** of all bonds of the ligands and (taking into consideration our prior data [5,15] that the positive charge on a central acceptor atom grows sufficiently

***The ionicity of the AB bond (i_{AB}) is equal to $(|q_A - q_B|/2) \cdot 100\%$.

FIGURE 1 q_A vs. ΔAK_a dependences. q_A values are calculated by use of the 4-31G⁺ basis set. Squares represent compounds not satisfying the correlation obtained. Radius of circles is equal to the error of measurements ΔAK_a . 1 P_{red}, 2 PH₃, 3 PMe₃, 4 P(CN)₃, 5 PCl₃, 6 Me₂PCl, 7 MePCl₂, 8 MeOPCl₂, 9 MeSPCl₂, 10 Me₃PO, 11 Cl₃PO, 12 MeP(O)Cl₂, 13 MeOP(O)Cl₂, 14 MeSP(O)Cl₂, 15 Me₃PS, 16 Cl₃PS, 17 MeP(S)Cl₂, 18 MeOP(S)Cl₂, 19 PF₆, 20 OCS, 21 CS₂, 22 MeNCS, 23 (H₂N)₂CS, 24 S₈, 25 H₂S, 26 EtSH, 27 Me₂S, 28 F₃CSCH₂Cl, 29 CICCSMe, 30 MeSCN, 31 S(CN)₂, 32 Me₂S₂, 33 Cl₂S₂, 34 Cl₂S, 35 F₃CSCl, 36 SO₂, 37 Me₂SO, 38 F₂SO, 39 SF₄, 40 Me₂SO₂, 41 MeSO₂Cl, 42 (MeO)₂SO₂, 43 SF₆, 44 Cl, 45 HCl, 46 MeCl, 47 PhCl.

^{*}Below we shall use only this charge scale for atomic charge definition; i.e., in Equations 3, 6, and 9.

^{**}Although differences between q_A values obtained with 4-31G* and 4-31G** basis sets are not large (see Figures 1–3 and Table 1), these are sufficient if data at the 4-31G⁺ level of theory are taken into consideration.

FIGURE 2 q_A vs. ΔAK_a dependences. q_A values are calculated by use of the 4-31G* basis set. The designations correspond to those in Figure 1.

FIGURE 3 q_A vs. ΔAK_a dependences. q_A values are calculated by use of the 4-31G^{**} basis set. The designations correspond to those in Figure 1.

	TABLE 1	Parameters ^a of C	orrelation Equations a	$= a\Delta AK_{a} +$	$b(a_{A} \text{ in e, } \Delta)$	AK, in eV
--	---------	------------------------------	------------------------	----------------------	----------------------------------	-----------

A	Basis Set	а	b	r	S	n	Compounds Not Satisfying the Correlation Obtained	Correlation Equation No.
Р	4-31G⁺	1.7(2)	-0.04(1)	0.912	0.22	17	3, 10	(1)
	4-31G*	2.04(15)	- 0.01(1)	0.962	0.17	17	3, 10	(2)
	4-31G**	2.03(15)	-0.01(1)	0.963	0.17	17	3, 10	(3)
S	4-31G⁺	1.54(5)	0.04(3)	0.985	0.12	30		(4)
	4-31G*	1.96(4)	0.04(3)	0.994	0.09	29	5	(5)
	4-31G**	1.95(4)	0.05(2)	0.994	0.09	29	5	(6)
CI	4-31G⁺	1.3(4)	0.05(1)	0.661	0.06	13	<u> </u>	(7)
	4-31G*	1.6(4)	0.02(1)	0.793	0.05	13		(8)
	4-31G**	1.5(3)	0.01(1)	0.802	0.05	13	<u> </u>	(9)

^ar is the correlation coefficient, s is the standard deviation, n is the number of points for which the correlation was obtained. Here and subsequently the mean-square errors in the last significant digit, taken for the 95% confidence interval by Student's criterion, are given in parentheses.

	<i>∆AK</i> _α , eV			lonicities of Bonds, %		Change of Effective Atomic Charge (δq_A) of Ligands on Their Complexation ^a			
Compound	A = P	A = S	A = CI	PS	PCI	A = P	A = S	A = CI	Σδq,
PCl ₃	0.373(7)	—	-0.09(1)		44(5)	0.5(1)		-0.10(7)	0.2(2)
AlBr₃ · PCl₃ SPCl₃	0.599(8) 0.430(8)	 0.10(2)	−0.156(15) −0.11(2)	 50(6)	72(7) 51(6)	0.0(1)		0.10(7)	0.2(2)
$AlBr_3 \cdot SPCl_3$	0.616(8)	- 0.080(9)	-0.171(14)	68(7)	74(8)	0.4(1)	0.04(6)	-0.1(1)	0.1(2)

TABLE 2 Change of Atomic Charges and Bond Ionicities of Free Ligands on Their Complexation

^aThe positive sign of δq_A corresponds to a decrease of the A atom electron density on complexation.

TABLE 3 Atomic Charges and Bond Ionicities Calculated by Experimental SK_a and PK_a Shifts

Molecule	<i>∆PK</i> ₀, eV	ΔSK_{α} , eV	q _P , e	q _s , e	i _{PS} , %
Me₃PS	0.198(7)	-0.121(14)	0.39(3)	-0.19(3)	29(3)
Pr ₃ PS	0.170(7)	- 0.138(10)	0.34(3)	-0.22(3)	28(3)
i-Pr ₃ PS	0.202(6)	- 0.153(7)	0.40(3)	-0.25(2)	32(3)
$[CH_3(CH_2)_7]_3PS$	0.177(6)	-0.118(9)	0.35(3)	-0.18(3)	26(3)
Ph ₃ PS	0.238(6)	-0.131(9)	0.47(4)	- 0.20(3)	33(3)
Cl ₃ PS	0.430(8)	-0.10(2)	0.86(7)	-0.14(4)	50(6)
MeP(S)Cl ₂	0.361(9)	-0.116(12)	0.72(6)	-0.18(3)	45(5)
MeOP(S)Cl ₂	0.542(10)	-0.097(9)	1.09(8)	-0.14(3)	62(6)
PhOP(S)Me ₂	0.362(6)	- 0.135(20)	0.72(6)	-0.21(4)	46(5)
PhO(Ph)P(S)Me	0.374(6)	-0.119(17)	0.75(6)	-0.18(4)	46(5)
PhOP(S)Ph ₂	0.395(7)	-0.134(10)	0.79(6)	-0.21(3)	50(5)
(BuO)₃PS	0.649(6)	-0.091(13)	1.31(10)	-0.13(3)	72(7)
AlBr ₃ · SPCl ₃	0.616(8)	-0.080(9)	1.24(9)	-0.11(3)	68(7)
MeSP(O)Cl ₂	0.527(8)	-0.055(9)	1.07(8)	-0.06(3)	56(6)
(MeS) ₃ P	0.156(6)	-0.066(12)	0.31(3)	-0.08(3)	20(3)
(EtS) ₃ P	0.148(8)	-0.085(11)	0.29(3)	-0.12(3)	20(3)
$(C_6F_5S)_3P$	0.121(18)	-0.089(19)	0.24(4)	-0.12(4)	18(4)
(EtS) ₂ PEt	0.108(6)	-0.078(11)	0.21(2)	-0.10(3)	16(3)
EtSP(Ph)Et	0.079(7)	-0.086(11)	0.15(2)	-0.12(3)	14(3)
MeSPCl ₂	0.270(8)	-0.079(16)	0.54(4)	- 0.10(4)	32(4)
(PrS) ₂ PNEt ₂	0.224(6)	-0.096(10)	0.44(4)	-0.14(3)	29(3)

on complexation while the electron density on acceptor geminal atoms does not decrease) acceptor.

The other example of data obtained may be analysis of the dependence between the ionicities of the P=S and P-S bonds and central phosphorus atom K_a line shifts. In our prior research [4], we investigated this dependence by using q_s vs. ΔSK_a relationships reported previously. There the slope coefficient for compounds containing the S = fragment exceeds remarkably that for the -S- compounds. As a result, the changes in $i_{P=S}$ values were small, although, in thiophosphoryl compounds, SK_a shifts change rather less than PK_{a} shifts and in the same direction. On the contrary, in compounds containing P-S bonds, the i_{P-S} values increased linearly with the growth of the positive charge on the central phosphorus atom. At the $q_{\rm P}$ and $q_{\rm S}$ values calculated from Equations 3 and 6, respectively, the i_{P-S} and i_{P-S} values satisfy the single i_{PS} vs. ΔPK_a dependence (see Table 3). The values of the PS bond ionicities increase linearly with the growth of the positive charge on a central phosphorus atom:

$$i_{\rm PS}, \,\% \,=\, 100(3) \Delta {\rm P} K_a$$

$$+ 8(2) (r = 0.991, s = 2, n = 21)$$
 (10)

REFERENCES

- L. N. Mazalov, V. D. Yumatov, V. V. Murakhtanov, F. Kh. Gel'mukhanov, G. N. Dolenko, E. S. Gluskin, A. V. Kondratenko: *Rentgenovskie Spektry Molekul*, Nauka, Novosibirsk (1977).
- [2] A. Meisel, G. Leonhardt, R. Szargan: *X-Ray Spectra* and Chemical Binding, Springer-Verlag, Berlin (1989).
- [3] G. N. Dolenko: in L. I. Belen'kii (ed.): Chemistry of Organosulfur Compounds. General Problems, Ellis Horwood, New York, pp. 287-362 (1990).
- [4] G. N. Dolenko, A. L. Litvin, V. P. Elin, Heteroatom Chem., 3, 1992, 311.

- [5] G. N. Dolenko, A. L. Litvin, V. P. Elin, O. Kh. Poleshchuk, J. Mol. Struct. (Theochem.), 251, 1991, 11.
- [6] W. L. Jolly, W. B. Perry, *Inorg. Chem.*, 13, 1974, 2686.
- [7] GAUSSIAN 92, M. J. Frish, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. P. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gompert, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defress, J. Baker, J. J. P. Stewart, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1992.
- [8] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 56, 1972, 2257.

- [9] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta, 28,* 1979, 213.
- [10] M. S. Gordon, Chem. Phys. Lett., 76, 1980, 163.
- [11] Landolt-Börnstein: *Structure Data of Free Polyatomic Molecule*. Springer-Verlag, Berlin, vol. 7 (1976).
- [12] I. Hargittai: Strukturnaya Khimiya Soedinenii Sery, Nauka, Moskva (1986).
- [13] V. A. Naumov, L. V. Vilkov, Molekulyarnye Struktury Phosphororganicheskikh Soedinenii, Nauka, Moskva (1986).
- [14] G. N. Dolenko, J. Mol. Struct., 291, 1993, 23.
- [15] O. Kh. Poleshchuk, B. Nogaj, G. N. Dolenko, V. P. Elin, J. Mol. Struct., 297, 1993, 295.